

### Examples of FAANG associated projects

- WUR-pigENCODE: Martien Groenen
- Canada and FAANG: Graham Plastow
- Strategy to identify regulatory mutations affecting complex traits:
   Amanda Chamberlain
- Equine FAANG: Carrie Finno

### WU FAANG pilot projects

Martien Groenen, Richard Crooijmans, Hendrik-Jan Megens, Ole Madsen



## Expression and methylation analyses in pig

- RNAseq and miRNA data
  - Improve gene annotation (mRNA)
  - IncRNA
  - miRNA
- RRBS data
  - CpG
- Samples: 3 boars (Large white, Duroc, Pietrain)
  - liver, spleen, testis, brain (frontal lobe), muscle (all)
  - olfactory bulb, lung and lymph node from (LW only)

Co-expression, correlations

### IncRNAs and miRNAs

#### IncRNAs (Ole Madsen)

- FEELnc (provided by Thomas Derrien, University of Rennes, France)
  - Number of mRNA: 30585
  - Number of IncRNA: 35046
  - Number of IncRNA without interaction with coding gene: 19832

#### MiRNAs (Anoop Arya)

- miRDeep2
  - Predicted a total of **1071** precursors.
    - Of these 689 are putative predicted precursors and 382 are known precursors

### ChIP-seq

- Histone marks
  - H3K27ac active enhancers and promoters
  - H3K4me3 promoter active genes
  - H3K27me3 silenced genes (active during developmental stages)
  - H3K4me1 active enhancers
- Samples
  - Cell lines (pig intestine, liver)
  - Tissues (start with pig intestine and liver)
  - FR-AgENCODE tissues
- In collaboration with the Molecular Biology Group of the Radboud University, Nijmegen (Henk Stunnenberg)

### ChIPseq

- Porcine small intestinal epithelial cell line (IPEC-J2)
  - established from normal intestinal epithelium cells isolated from the jejunum of a neonatal, unsuckled pig
- Liver cell line

- WGS (30x)
- RNAseq
- RRBS

- Histone marks
  - H3K27ac
  - H3K4me3
  - H3K27me3
  - H3K4me1

- Controls (qPCR)
  - HOXC4
  - HOXB5
  - NDUFA4\*
  - TRX1\*

expressed (above 100 fpkm) in all our RNA-seq data

## ChIPseq



## Canada and FAANG

PAG January 11<sup>th</sup> 2016



and FAANG

# Leading Canada's genomics enterprise



Genome Canada Collaboration Opportunities and Funding for Livestock Genomics, D Bailey W158 10<sup>th</sup> January

## Programs that take discoveries from lab to society



### Application of Genomics to Improve Disease Resilience and Sustainability in Pork Production

**Project Leader:** Michael Dyck (U of Alberta)

**Genome Centres:** Genome Alberta and Genome Prairie

**Project Budget:** \$9,801,714

#### **Project Partners:**

- ALGP2
- PigGen Canada
- ALMA
- Genome Alberta PEDV
- Swine Innovation Pork
- Saskatchewan Ministry Agriculture and Food
- INRA
- National Pork Board
- Alltech Inc.
- OGI







### Pigs

- Application of genomics to improve disease resilience and sustainability in pork production
- 2016 2019
- Industry collaboration with Large White \* Landrace F1 barrows in a "natural challenge" samples from sick/healthy pigs. (samples can potentially be collected from female litter mates)
- Collection of tissues from LW\*LR fetuses (PRRSV challenge plus controls – several time points d84-98 of pregnancy)

Increasing Feed Efficiency and Reducing Methane emissions through Genomics: A New Promising Goal for the Canadian Dairy Industry

**Project Leader:** Filippo Miglior (U of Guelph)

**Genome Centres:** Genome Alberta and Ontario Genomics

**Project Budget:** \$10,306,910

**Project Partners:** 

- Canadian Dairy Network
- Dairy Producers
- GrowSafe System
- Ontario Ministry of Research and Innovation
- Australia DEDJTR
- UK Scottish Research College
- USDA Beltsville Research Herd
- Qualitas, Switzerland







### Dairy Cattle

- W146 Increasing Feed Efficiency and Reducing Methane Emissions Using Genomics: An International Approach
- Date: Saturday, January 9, 2016, Time: 2:30 PM
- <u>Christine F. Baes</u>, Centre for the Genetic Improvement of Livestock, Department of Animal Biosciences, University of Guelph, Guelph, ON, Canada
- Extremes of feed efficiency and methane emission
- Core tissues
- Core assays

## Reverse Vaccinology Approach for the Prevention of Mycobacterial Disease in Cattle

Project Leaders: Andy Potter (VIDO), Robert Hancock (UBC)

Genome Centres: Genome Prairie and Genome BC

**Project Budget:** \$ 7,358,606

**Project Partners:** 

- University of Saskatchewan
- Genome BC
- AFBI (Agri-Food and Biosciences Institute)







### Additional Support

- Federal, provincial and industry support for livestock genomics efforts
- Co-funding and international collaboration are key success factors

## Development and Deployment of MBVs/gEPDs for Feed Efficiency and Carcass Traits that Perform in Commercial Beef Cattle

Project Leader: John Basarab (U of Alberta), Donagh Berry

(Teagasc), John Crowley (U of Alberta)

Genome Centre: Genome Alberta

**Project Budget:** \$4,473,035

#### **Project Partners:**

- Genome Alberta
- ALMA
- BIO
- Beefbooster Inc.
- CCHMS
- ICBF
- USDA-ARS







### Existing plan

- Collection of FAANG tissues from animals of "high and low" feed efficiency based on EBVs (and GEBVs) includes methane emission
- Potential to expand to carcass and quality traits
- Crossbred steers (defined breed type) and primarily slaughter age
- Project focus on variant identification

## New supporting application to Alberta Livestock and Meet Agency

- Lol due 11<sup>th</sup> January 2016
- Outline plan
- Select extreme animals on ebv (or breed Hi/Hi and Lo/Lo) for feed efficiency and methane yield.
- Run a time series at say 4 key points (pre-weaning, first test, puberty, and adult).
   Last 3 will have own phenotype.
- Collect core FAANG tissues (inc. rumen) from 2 heifers and 2 steers at each time point – 16 samples per trait.
- Angus or Crossbred population (with breed proportions)
- RNAseq and analysis/bioinformatics in Canada, core samples banked and sent (with staff) to expert labs running FAANG core assays (e.g. ChIP-seq assays. DNase-seq or ATAC-seq and Hi-C).

### Ontario Ministry of Agriculture

- PI: **Angela Canovas (**P0518 P580)
- Canadian and international partners Stephen Miller (AgResearch, NZ), Juan Medrano (UC Davis), Sinead Waters (Teagasc, Ire)
- Focus feed efficiency (and meat quality)
- Cattle

```
Angus x Simental (UoG Research herd)
Adult (n=14 animals)
```

Holstein (UoG Research herd) Adult (n=14 animals)

- Pig
   Duroc
   Adult, male (n=14 animals)
- Muscle, Adipose, Liver, Gut, Brain

### Agriculture and AgriFood Canada

- PI: Eveline M. Ibeagha-Awemu
- Dairy and Swine Research and Development Centre, Sherbrooke, Qubec
- Holstein, >2nd lactation (6 cows)
   Duodenum, Ileum, Rumen, Colon, Milk fat, Adipose tissue,
   Skeletal muscle, Liver, Lung, Heart, Kidney, Spleen
- W020 MicroRNAs are Master Regulators of the Bovine Lactation Curve
   Date: Tuesday, January 12, 2016 Time: 1:50 PM
- P0087 Long Non-Coding RNA (IncRNA) Is Abundantly Expressed in the Gastro Intestinal Tract of Calves

### Collaborators

- University of Alberta: Michael Dyck, Leluo Guan, Paul Stothard, John Basarab (AAF)
- University of Saskatchewan: John Harding
- University of Guelph: Angela Canovas, Christine Baes, Filippo Miglior (CDN)
- Agriculture and Agri-Food Canada: Carolyn Fitzsimmons (UofA), ChangXi Li (UofA), Eveline Ibeagha-Awemu



- Roslin Institute: Alan Archibald, Mick Watson
- FAANG ASA Elisabetta Giuffra, Huaijun Zhou

**Genome**Canada

and FAANG





Strategy to identify regulatory mutations affecting complex traits

Amanda Chamberlain, Mike Goddard, Majid Khansefid, Min Wang, Iona Macleod, Ben Hayes

### What assays are we using?







39 million variants – 1000 bulls Gene Atlas Tissue Bank Ref populations genotyped \*GWAS\* \*genomic selection\*

Experimental populations \*eQTL\* \*ASE\* \*Non coding RNA\*

Gene Atlas Tissue Bank Experimental populations Public Data \*Enhancers\* \*Promoters\* \*TF binding sites\*



A catalogue of novel bovine long noncoding RNA across 18 tissues

Lambros T. Koufariotis 1,2,3 e \*, Yi-Ping Phoebe Chen e, Amanda Chamberlain 2,3 e

- 1 College of Science, Health and Engineering, La Trobe University Bundoora, Melbourne, Victoria, Australia, 2 Department of Environment and Primary Industries, AgriBio Bundoora, Melbourne, Victoria, Australia, 3 Dairy Futures Co-operative Research Centre, Melbourne, Victoria, Australia
- These authors contributed equally to this work.

Chamberlain et al. BMC Genomics (2015) 16:993 DOI 10.1186/s12864-015-2174-0



#### RESEARCH ARTICLE

**Open Access** 

Extensive variation between tissues in allele Occasionary specific expression in an outbred mammal



Amanda J. Chamberlain<sup>1,2†</sup>, Christy J. Vander Jagt<sup>1,2†</sup>, Benjamin J. Hayes<sup>1,2,3\*</sup>, Majid Khansefid<sup>1,2,5</sup>, Leah C. Marett<sup>4</sup>, Catriona A. Millen<sup>2,5</sup>, Thuy T. T. Nguyen<sup>1</sup> and Michael E. Goddard<sup>1,5</sup>



### Our strategy for identifying regulatory variants



### Summary

- Strategy involves using QTL, eQTL, ASE, non-coding RNA, ChIPseq marks, public data to identify regulatory variants and use in genomic prediction.
- Contribution to FAANG:
  - 39 tissues from 2 cows and their foetus'
  - RNAseq
  - ChIPseq (H3K4me1, H3K4me3, H3K27ac, H3K27me3, CTCF)
  - Bioproject PRJNA251439, FAANG tag
- Other data currently available:
  - 1 cow, 18 tissues non-stranded RNAseq, 2 tissues stranded RNAseq, Bioproject PRJNA251439, SRA SRP042639
  - 3 cows, milk and white blood cells stranded RNAseq, Bioproject PRJNA305942, SRA SRP067373



## FAANG Associated Projects Update: Equine

**Carrie Finno** 

A Community Effort to Functionally
Annotate the Equine Genome and
Facilitate Genome to Phenome
Analyses

### Equine Genome

- 2007 Equine Genome-6.8X Coverage
  - -EquCab2.0 (Wade *et al.*, 2009)
- Towards EquCab3.0
  - Kalbfleisch, MacLeod, Orlando et al. W293)
  - -Morris Animal Foundation D15EQ-019



## On-going Effort



### Structural Annotation

- RNA-seq
  - 1) Gene structure ~69K transcripts from pool of 43 tissues (Thoroughbred)
    - Hestand et al., 2015 PLoS One 10(6):e0124375
  - 2) Eight tissue-specific transcription profiles (multiple breeds): embryo (ICM and TE), cerebellum, brainstem, spinal cord, retina, skeletal muscle, and skin.
    - Mansour et al. (P0563)
    - Publically available resource- UCSC track hubs
    - Tissue Specificity
    - Improve annotation: Extension of UTRs & Identification of novel transcripts including ncRNA
    - Correcting potential errors

### Equine Functional Annotation: Proposed

- Samples: 2 Adult Thoroughbred horses (female and male)
- 50 tissues to be collected
- 8 prioritized tissues for assays: Skeletal muscle, liver, ovary/testis, cerebral cortex, spleen, heart, lung, and laminae
- Assays: WGS, RNA-Seq, microRNA-Seq, ChIP-seq (H3K4me3, H3K4me1, H3K27me3, H3K27ac, CTCF) and DNase-Seq
- Funding:
  - USDA Species Coordinator funds for sample collection
  - Submitted grant pending (Finno, Petersen, Bellone)







James MacLeod University of Kentucky



Ernest Bailey University of Kentucky



Jessica Petersen University of Nebraska



Carrie Finno University of California-Davis



Ted Kalbfleisch University of Louisville



Samantha Brooks University of Florida



Michael Mienaltowski University of California-Davis



Molly McCue University of Minnesota



Stephen Coleman Colorado State University



Rebecca Bellone University of California-Davis



Jim Mickelson University of Minnesota



Ottmar Distl University Veterinary Medicine, Hannover